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T. Rüdisser2 · Wenyuan Yu1 · Tingyu Gou4 · Réka
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Abstract Understanding the properties, especially the magnetohydrodynamic (MHD) invariants,
of coronal mass ejections (CMEs) measured in-situ is key to bridging the CME properties from
the Sun to interplanetary space. In order to investigate CMEs from the in-situ measurements
that provide a one-dimensional (1-D) cut of the CME parameters over the spacecraft trajectory,
various magnetic flux rope (MFR) models have been developed, among which the models with
a circular cross-section are the most popular and widely used. CMEs are found to be deformed
during their propagation in interplanetary space, in which the cross-section may be flattened in the
direction of propagation, i.e., to develop an elliptical or even pancake-like shape. We use numerical
MHD simulations in 2.5-D to investigate the influence of the CME deformation on the in-situ
fitting using two linear force-free MFR models with a circular cross-section, and we focus on the
axial and poloidal magnetic fluxes, which are conserved in the ideal MHD frame and simulations.
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We quantitatively compare the fitted axial and poloidal fluxes with those in simulations. We
find that both models underestimate the axial flux compared to that in simulations, and such
underestimation depends on the CME deformation. However, the fitting of the poloidal flux is
independent of the deformation. We discuss the reasons for the axial flux underestimation and the
implication of the CME deformation for the CME in-situ fitting.

Keywords: Coronal Mass Ejections; Magnetic Fluxes; In-situ Fitting Techniques

1. Introduction

Coronal mass ejections (CMEs) are large-scale solar transients that erupt from the corona, prop-
agate to interplanetary space, and provide a large amount of magnetic flux into the heliosphere.
When a CME passes a spacecraft in interplanetary space, in-situ measurements taken by the
spacecraft provide a time series of measurements, which is often equated to a one-dimensional
(1-D) cut of the CME parameters along the spacecraft trajectory under the assumption of CMEs
as static structures. This assumption has been recently analyzed in more detail, both using data
(Regnault et al. 2023, 2024a) and simulations (Regnault et al. 2024b). For CMEs measured in-situ,
there exists a typical subset called magnetic clouds (MCs) that have observational properties of
a) an enhanced magnetic field strength, b) a smooth rotation of the magnetic field vector through
a large angle, and c) a low proton temperature (Burlaga et al. 1981). MCs, serving as one of the
most important aspects of CME studies, have been investigated widely and in-depth since the
1980s.

To obtain the 2-D or 3-D configuration of MCs from the 1-D in-situ data, a variety of techniques
have been continuously developed and improved. Based on the concept that MCs consist of twisted
magnetic flux rope (MFR) structures (Burlaga et al. 1981), many MFR models, either force-free
(Goldstein 1983; Marubashi 1986; Burlaga 1988) or non-force-free (Hidalgo, Nieves-Chinchilla, and
Cid 2002), have been proposed to describe the MC magnetic field configurations. In those models,
the assumption of the geometry of the MFR is a crucial point. Those geometries include circular
cylindrical symmetry, non-circular cylindrical symmetry, and/or toroidal symmetry. In addition,
the Grad-Shafranov reconstruction was developed to incorporate the magnetostatic equilibrium
with an invariant direction of MCs and to recover the MC magnetic field configuration, without
any presuppositions of the MC magnetic field descriptions or cross-section (Hu and Sonnerup
2001). One can refer to the review papers of, e.g., Forbes et al. (2006), Al-Haddad et al. (2013),
and Zhang et al. (2021) for more details about different techniques. Even though there have been
many advanced techniques, the techniques that are popular and widely used in the heliophysics
and space weather communities are still the models with a circular cross-section that have concise
solutions and can be easily applied to in-situ measurements (e.g., Wang et al. 2015, 2016, 2018;
Nieves-Chinchilla et al. 2016; Yu et al. 2022).

The application of these techniques provides the CME parameters when the CME is measured
locally and further helps bridge the CME properties from the Sun to interplanetary space (e.g., Qiu
et al. 2007; Möstl et al. 2009; Hu et al. 2014; Wang et al. 2017; Pal et al. 2017; Wang et al. 2018),
especially those invariants, e.g., magnetic flux in the ideal magnetohydrodynamics (MHD) frame
or magnetic helicity. For example, Qiu et al. (2007) investigated the magnetic flux budget of CMEs
in association with magnetic reconnection in the low corona and compared the flux components
(poloidal and axial) measured in-situ with the reconnection flux estimated in the corona. They
found that the CME poloidal flux estimated in-situ is comparable with the reconnection flux.
Similarly, Hu et al. (2014) found that the amount of the twisted flux per unit length of CMEs
is comparable with the total reconnection flux on the Sun. Wang et al. (2017) studied the twist
distribution inside the CME-associated MFR estimated both in the corona and in-situ, in which
the MFR twist in the corona was estimated based on the ratio of the poloidal magnetic flux to
the axial magnetic flux.

In order to have reliable comparisons between solar and in-situ estimates, in addition to ad-
dressing the uncertainties in the reconnected flux from the flare respective (Temmer et al. 2017),
a key requirement is to accurately fit or reconstruct CME properties. Uncertainties of the fitting
techniques need to be addressed. Al-Haddad et al. (2013) found that different techniques may have
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different outputs even though they are applied to the same CME. Furthermore, the evolution, e.g.,
magnetic erosion (Dasso et al. 2006; Ruffenach et al. 2012; Lavraud et al. 2014; Wang et al. 2018;
Farrugia et al. 2023) or deformation of the CME during its propagation are expected to affect the
fitted results. In this study, we focus on the deformation aspect. While propagating in interplan-
etary space, the cross-section of CMEs is found to be deformed (or flattened) in the propagation
direction from an initial circular shape to an elliptical shape or even a pancake-like shape (e.g.,
Manchester et al. 2004; Riley and Crooker 2004; Owens 2006; Savani et al. 2011). Therefore,
employing the popular circular cross-section model for a deformed CME may lead to inaccurate
estimations of CME parameters, and comparing those MHD invariants of CMEs between solar
and in-situ measurements is then affected. To investigate the influence of the deformation, it is
most effective to use numerical simulations.

The development of numerical methods enables us to study the eruption and propagation of
CMEs from the Sun to the heliosphere (see, e.g., Odstrčil and Pizzo 1999; Manchester et al. 2004,
2017; Lugaz et al. 2009; Feng 2020; Shen et al. 2022). Past studies have shown that numerical
simulations can be used to test the output of the fitting techniques (e.g., Riley et al. 2004; Vandas,
Romashets, and Geranios 2010; Al-Haddad et al. 2011, 2019; Lynch et al. 2022). For example,
Riley et al. (2004) used blind tests to compare different fitting techniques of the simulated CME
passing through in-situ spacecraft along different trajectories. Furthermore, the reconstruction and
fitting techniques were applied to predominantly writhed CMEs and twisted MFRs to test their
capability to reconstruct either the writhed or twisted magnetic field configuration (Al-Haddad
et al. 2011, 2019). It was found that due to the appearance of magnetic field rotation resulting from
writhed magnetic field lines, the twisted MFR models can inadvertently reconstruct a non-twisted
structure.

In this paper, we use numerical simulations to investigate the influence of the flattened cross-
section of the (CME-associated) MFR on the fitted results using models with a circular cross-
section. We focus on magnetic flux, which is conserved during the CME propagation in our
numerical scheme. We introduce the numerical method and fitting techniques in Section 2. In
Section 3, we present comparisons between the MFR parameters obtained from simulations and
fitting techniques. Discussion and conclusions are provided in Sections 4 and 5, respectively.

2. Numerical Setup and MFR Fitting Model

2.1. Numerical Simulation

Following Sun and Hu (2005) and Zhuang et al. (2018), we solve the MHD equations in spherical
coordinates (r, θ, ϕ) and consider 2.5-D problems in the heliospheric meridional plane ( ∂

∂ϕ = 0).
2.5-D simulations are suitable for the motivation of this study for the following three reasons.
First, the used fitting techniques also solve 2.5-D problems, i.e., they assume symmetry along the
MFR axis. Second, the MFR boundaries can be accurately identified in 2.5-D simulations, while
the input of the MFR boundaries was also found to influence the fitted results (Riley et al. 2004).
Third, it is relatively easier to achieve the conservation of magnetic fluxes and helicity in a 2.5-D
simulation as compared to a 3-D simulation.

The ideal 2.5-D MHD equations are listed as follows.

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v

∂t
+v·∇v+R∇T+RT

ρ
∇ρ+ 1

µ0ρ
[Lψ∇ψ+Bϕ×(∇×Bϕ)]+

1

µ0ρr sin θ
∇ψ·(∇×Bϕ)ϕ̂+

GMs

r2
r̂ = 0,

(2)

∂ψ

∂t
+ v · ∇ψ = 0, (3)

∂Bϕ

∂t
+ r sin θ∇ ·

(
Bϕv

r sin θ

)
+
[
∇ψ ×∇

( vϕ

r sin θ

)]
ϕ
= 0, (4)
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∂T

∂t
+ v · ∇T + (γ − 1)T∇ · v = 0. (5)

ρ, v, T , ψ, and B are density, flow velocity, temperature, magnetic flux function, and magnetic
field, respectively. B is expressed as follows:

B = ∇×
(

ψ

r sin θ
ϕ̂

)
+Bϕ, Bϕ = Bϕϕ̂, (6)

and the operator L acts as:

L ≡ 1

r2 sin2 θ
(
∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
). (7)

R is the gas constant, µ0 is the vacuum magnetic permeability, G is the gravitational constant,
Ms is the mass of the Sun, and γ is the polytropic index.

The numerical units in the simulations are introduced in Zhuang et al. (2018) in detail. Different
from Sun and Hu (2005) and Zhuang et al. (2018), in this study, we extend the simulation domain
in the radial direction to 645 R⊙ to reduce the numerical effect caused by the outer boundary,
while we require the CME rear to propagate to at least 260 R⊙, adopt a distance-dependent
polytropic index, and adjust the magnetic field strength at the coronal base to be 1.5 G. The
computational domain is thus taken as 1 ≤ r ≤ 645 R⊙ (r = 1 R⊙ represents the coronal base)
and 0◦ ≤ θ ≤ 90◦, discretized into 264×92 grid points and symmetric with respect to the equatorial
plane (θ = 90◦). The radial grid spacing is set to be a) increasing according to a geometric series
of a common ratio of 1.02 between 1 and 10 R⊙, b) uniform (0.625) between 10 and 30 R⊙, and
c) increasing according to a ratio of 1.02 between 30 and 645 R⊙. In past studies, the polytropic
index γ is set as a constant of 1.05, aiming to add extraneous heating of the solar corona and
provide supersonic solar wind solutions. However, when the computational domain is extended,
such a value introduces significantly more heating at larger distances, and is inconsistent with
measurements. Based on the estimates of γ in some past studies (e.g., Totten, Freeman, and Arya
1995; Nicolaou, Livadiotis, and McComas 2023), in our simulations, γ is set to be 1.05 between 1
and 30 R⊙, to linearly increase to 1.42 between 30 and 215 R⊙, and to be 1.42 after 215 R⊙. As
such, we find that the solar wind and CME parameters obtained in-situ are comparable with real
measurements; obtaining a more realistic variation of γ (e.g., Roussev et al. 2003) is outside the
scope of this study.

The simulation is performed in the following sequences (see Figure 1). First, a steady solar
wind background with a helmet streamer astride the equator is constructed. Second, a MFR
emerges from the streamer base by adjusting the inner boundary conditions and stays beneath
the streamer in equilibrium with three initial parameters of total poloidal magnetic flux (Φp),
total axial magnetic flux (Φz), and total mass (M). Third, the eruption of the MFR is triggered
by adjusting the three parameters to cause the so-called catastrophe of the coronal system (e.g.,
Forbes and Isenberg 1991; Sun and Hu 2005; Zhuang et al. 2018, 2019; Zhang et al. 2020). During
the propagation of the MFR, these three parameters are conserved. In this study, we allow the
occurrence of numerical magnetic reconnection to avoid numerical cases with a long-stretching
current sheet beneath the MFR at larger distances. Due to the usage of the magnetic flux function,
the identification of the initial (indicating the stage just at the catastrophic point; Zhuang et al.
2018) MFR boundary can be performed accurately and is not affected by the introduction of
numerical reconnection occurring inside the current sheet region beneath the MFR. In addition,
this numerical reconnection does not introduce additional axial magnetic flux. Therefore, the
reconnected fields are not regarded as part of the MFR, and the conservation of parameters of the
initial MFR remains unaffected. In the following part, we focus on the parameters of the initial
MFR.

We obtain the synthetic in-situ profiles of the magnetic field and proton parameters at different
locations, i.e., at r = 15, 40, 80, 120, 160, 215 (equivalent to 1 au), and 260 R⊙, and with an angular
separation of 0◦, 4◦, and 9◦ from the equator (see the three dashed straight lines in Figure 1). We
have 21 synthetic spacecraft in total. The parameters are in a coordinate system with the origin
at the spacecraft and the three directions aligned along r, θ, and ϕ. The three axes form the local
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cartesian coordinates. It is intuitive at ∆θ = 0◦, and for simplicity, we temporarily call it “Sun-
Earth” line. Under this assumption, r is related to the “Sun-Earth” line, θ is perpendicular to the
ecliptic plane, and ϕ completes the right-hand coordinate system. The positions of the synthetic
spacecraft at ∆θ = 4◦ or 9◦ are equivalent to the scenario in which the propagation direction of
the MFR is 4◦ or 9◦ relative to the “Sun-Earth” line in latitude while the spacecraft remains on
the “Sun-Earth” line, or the helmet streamer is tilted in latitude as compared to the ecliptic plane.

2.2. MFR Fitting Model

We use two MFR fitting techniques with a circular cross-section here. The first is the velocity-
modified cylindrical linear force-free flux rope model (Wang et al. 2015). This model uses the
Lundquist solution (Lundquist 1950) to describe the MFR magnetic field components and in-
corporates the measured velocity components in the fitting by considering the propagation and
expansion of the MFR as well as the plasma poloidal motion inside the MFR. The three magnetic
field components in the so-called MFR coordinates (r, φ, z) (here, the three axis vectors are
different from those in simulations) are described as follows:

Br = 0, (8)

Bφ = HB0J1(αr)φ̂, (9)

Bz = B0J0(αr)ẑ, (10)

in which H = ±1 is the handedness (sign) of the MFR helicity, B0 is the magnetic field strength
at the MFR axis, α = 2.41/R0 is the constant force-free factor, R0 is the radius of the MFR
cross-section, and J0 and J1 are the zero-order and first-order of the Bessel functions. When in-
corporating the MFR radial expansion into the model, B0 becomes time-dependent and expressed
as follows:

B0(t) = B0(t0)

[
R(t0)

R(t)

]2
, (11)

based on the magnetic flux conservation, following Farrugia et al. (1992). In Equation 11, t0 is
the time when the synthetic spacecraft first encounters the MFR. We note that in practice, unlike
the model of Yu et al. (2022) described below, t0 is not used during the fitting as t − t0 can
also represent the time relative to the MFR front boundary. R(t) = R(t0) + ve(t − t0), and ve
is a constant expansion speed at the MFR boundary. ve can also be fitted with two additional
parameters vc = (vr, vϕ, vθ) by incorporating the velocity profiles and separating the MFR bulk
velocity (vr) and the poloidal speed at the MFR boundary (vp). See Wang et al. (2015) for details.

We note that the MFR has a global toroidal symmetry based on the numerical solution in
spherical coordinates, which differs from the fitting model that assumes a cylindrical symmetry
(straight axis). However, when fitting local measurements, we consider that the cylindrical model
is valid since the torus is locally approximated by a straight tube if the MFR radius is much
smaller than the heliocentric distance. In the simulations, at the six selected distances, the ratio
of the MFR radius to the distance varies from 0.20 at 20 R⊙ to 0.08 at 260 R⊙, which supports
the use of cylindrical models. Furthermore, the model with the Lundquist solution and expansion
considered is suitable for the simulated case because a) the axial magnetic field component at the
MFR boundaries is zero (Equation 9), and b) the MFR has expansion along the radial direction
as shown by the synthetic in-situ velocity profiles.

In brief, this model fits all parameters simultaneously and determines the final outputs based on
the minimum normalized root-mean-square (χ). The fitting progress of the model and the output
parameters are described in Wang et al. (2015). In this study, we focus on the parameters B0, R0,
θ0, ϕ0, Φp, and Φz. B0 and R0 are determined when the MFR front first reaches the spacecraft.
θ0 and ϕ0 indicate the direction of the MFR axis in the local simulation coordinates. Φp and Φz

are the poloidal and axial magnetic fluxes of the MFR, which are expressed as follows:

Φp =

∫ l

0

∫ R0

0

Bφdrdz = 0.416B0R0l, (12)
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Φz =

∫ 2π

0

∫ R0

0

Bzrdrdφ = 1.35B0R
2
0, (13)

where l is the length of the MFR axis. Following Wang et al. (2015), we set l as l = π+2
2 Da, in

which Da is the heliocentric distance of the MFR axis when the MFR front reaches the spacecraft.
In order to have a consistent comparison of Φp, the simulated Φp needs to be multiplied by a factor
of 2.44 (2π/π+2

2 ). The simulated and fitted MFR parameters are also listed in Table 1, including
the fitted impact parameter (d; the sign of d is not considered due to the symmetry of the MFR
with respect to the equator).

The second model is the radially-expanding Lundquist model (Yu et al. 2022) inherited from the
development of the expanding Lundquist solution (Farrugia et al. 1992, 1993), with the magnetic
field components in the MFR coordinates expressed as follows:

Br = 0, (14)

Bφ(t) = H(B0/τ)J1(αr/τ)φ̂, (15)

Bz(t) = (B0/τ
2)J0(αr/τ)ẑ, (16)

in which α = 2.41/R0, τ = 1+ t/t0, and t0 represents the MFR self-similar expansion time during
its transit from the Sun to the spacecraft. Parameter t0 is estimated by fitting the decreasing
velocity profile with Equation 17:

Vr(t) = (U +R′
0/t0)/(1 + t/t0), (17)

where U is the velocity at the location with the maximum magnetic field strength (i.e., the MFR
axis), and R′

0 indicates the radius of the MFR when first encountered by the synthetic spacecraft.
Different from the first model, the second one inputs initial estimates of θ0 and ϕ0 using minimum
variance analysis into the fitting and further fits B0, θ0, ϕ0, and d. t0 is fixed during the fitting,
and R′

0 is replaced by R0 which is derived based on the average solar wind speed within the
MFR period and the fitted d. We note that at t = 0 of the MFR front boundary, Equations 15
and 16 simplify to Equations 9 and 10, and thus Equations 12 and 13 are also applicable to the
calculations Φp and Φz in the expanding Lundquist model.

In this study, we do not aim to compare the fitted qualities between these two models. Our
focus is to compare Φp and Φz obtained between simulations and fittings.

3. Result

3.1. Simulation and Fitting

Figure 1 shows the MFR before (top panel) and after (middle and bottom panels) the eruption.
To trigger the eruption, the MFR parameters are adjusted to be Φp = 4.04× 1021 Mx per radian,
Φz = 2.42 × 1021 Mx, and M = 1.07 × 1013 kg per radian. We have tested different sets of the
MFR initial parameters, and the case presented in this paper is used because a) the synthetic
in-situ profiles show that the ratio of the maximum axial magnetic field vector to the maximum
poloidal field vector is close to the ratio described by the Lundquist solution (Equations 9 and
10) and b) the MFR has an approximately linear-decreasing in-situ velocity profile indicating its
radial expansion. The solid curves and circles in the figure depict the magnetic field lines of the
background and MFR in the meridional plane, respectively. The orange circle outlines the accurate
MFR boundary determined by the magnetic flux function. In the middle and bottom panels, the
contours are filled with radial velocity values. It is found that the MFR becomes flattened to
an elliptical cross-section during its outward propagation and drives a high-velocity compression
region ahead of itself (middle panel).

Figure 2 shows the variations of the MFR propagation and geometric parameters. The top left
and right panels display the temporal variations of the heliocentric distance and radial velocity of
the front, axis (determined by location with the maximum magnetic flux function), and rear of the
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Figure 1. MFR before (top panel) and after (middle and bottom panels; at two different time steps) the eruption in
the meridional plane. The solid curves depict magnetic field lines in the simulation domain. The orange circle marks
the MFR boundary. In the middle and bottom panels, the contours are filled with the radial velocity information.
The three dashed straight lines indicate the latitudes of the synthetic spacecraft.

MFR, respectively. It is found that the MFR experiences an impulsive acceleration within the first
6 hours and a gradual but weaker acceleration contributed by numerical reconnection at larger
distances. After ∼60 hours, the velocities of the front, axis, and rear of the MFR become nearly
constant. The velocity differences of the MFR substructures indicate the existence of expansion
in the radial direction. The bottom left panel shows the variations of the MFR radial sizes from
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Figure 2. Variations of the MFR propagation and geometric parameters. The top left and right panels display
the temporal variations of the heliocentric distance and radial velocity of the front, axis, and rear of the MFR,
respectively. The bottom left panel shows the distance variations of the MFR radial sizes from the front to rear
(solid), front to axis (dashed), and axis to rear (dotted), as well as the lateral size (red). The bottom right panel
displays the variation of the aspect ratio of the MFR cross-section.

the front to the rear (solid), from the front to the axis (dashed), and from the axis to the rear

(dotted), as well as the lateral size (red) along with the distance of the MFR front. The radial sizes

from the front to the axis and from the axis to the rear are similar during the MFR propagation,

which indicates that the axis is roughly located at the geometric center of the MFR in the radial

direction. We estimate the rate of increase in the radial size using a power-law distribution following

past studies (e.g., Bothmer and Schwenn 1998; Savani et al. 2009; Gulisano et al. 2010; Nieves-

Chinchilla et al. 2013; Zhuang et al. 2023). The radial size between the front and the rear shows

a power-law index of 0.82 within ∼20 R⊙ and 0.62 beyond. The result of 0.82 is similar to the

power-law indices found in studies such as Bothmer and Schwenn (1998) and Gulisano et al. (2010),

which are around 0.8, while the result of 0.62 is similar to the estimates in Savani et al. (2009)

(0.55–0.65). Similarly, using 3-D simulations, Al-Haddad et al. (2019) found that the power-law

index for the CME radial size increase is around 0.7 from the corona to 0.5 au. The decrease in the

expansion rate is due to the fact that the rear part of the MFR continues experiencing a stronger

acceleration compared to the front part, as shown in the top right panel of Figure 2. Focusing on
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the radial size from the front to the axis, the power-law index is found to be around 0.8 during
the propagation of the MFR.

The lateral size is the size along a line perpendicular to the Sun-MFR axis line and intersecting
the leftmost and rightmost edges of the MFR. Finally, the distance variation of the aspect ratio
(lateral size to the radial size from front to rear) of the MFR is given in the bottom right panel of
Figure 2. The aspect ratio is found to increase during the MFR cross-section propagation and reach
1.0 and ∼2.1 when the MFR front is at 15 and 215 R⊙, respectively. The aspect ratio increases
much more slowly after around 150 R⊙ and remains approximately constant beyond 215 R⊙. Even
though the aspect ratio is increasing, we find that the angular width decreases during the MFR
propagation, from 34◦ initially to 24◦ at 215 R⊙. Decreases in the CME angular width during
the CME propagation have been found in past studies such as Lugaz et al. (2010) and Nieves-
Chinchilla et al. (2013). Magnetic tension force may play a role in decreasing the angular width
(rather than maintaining a constant angular width) and keeping the MFR cross-section nearly
circular, thus preventing the aspect ratio from being too large (Suess 1988).

The distance variation of the aspect ratio enables us to estimate the influence of the flattened
MFR cross-section on the fitting if the synthetic spacecraft are set at different distances. We do
so for the synthetic in-situ parameter profiles at 21 different locations. We also test the influence
of the impact parameter (the closest approach of the observational path to the MFR axis) on
the fitting, and thus three different Sun-spacecraft lines are used with angular separations (∆θ)
of 0◦, 4◦, and 9◦. Figure 3 shows the synthetic in-situ profiles of the magnetic field strength,
three magnetic field components, radial proton velocity, proton density, and proton temperature
from top to bottom based on the synthetic spacecraft at 215 R⊙ (1 au) at ∆θ = 0◦. The MFR
boundaries are marked by the vertical dashed lines. Classic signatures of MCs are found inside
the MFR region: enhanced magnetic field strength, rotation of the magnetic field vectors, and
decrease in the proton temperature (Burlaga et al. 1981). The axial magnetic field (Bϕ) outside
the MFR region is zero. The decrease in the radial velocity from the front to the rear is one of
the in-situ signatures indicating the existence of the radial expansion of the MFR (Farrugia et al.
1993). Additionally, the duration of the MFR region is found to be around 18 hours, which is
consistent with the average of 20 hours of magnetic clouds measured near 1 au (Richardson and
Cane 2010; Regnault et al. 2020). We note that, due to the lower grid resolution and smoothing
treatment in simulations, the potential formation of the shock structure is not observed. The CME
is expected to drive a shock when it is close to the Sun as the leading edge speed is faster than
the fast magnetosonic speed in the solar wind frame. As the CME propagates, the CME leading
edge decelerates, and a shock would not form or would not be driven anymore.

The two linear force-free MFR models are then applied to the synthetic in-situ parameters. The
fitted profiles are shown by the red (Wang et al. 2015) and blue (Yu et al. 2022) dashed curves
in Figure 3, and the fitted parameters are listed in Table 1. Note that the blue dashed line in
the velocity panel indicates the fit to the velocity-time data points using Equation 17. It is found
that the fitted profiles match well the synthetic profile except for Br for the model of Wang et al.
(2015) (caused by a slight inconsistency of the fitted ϕ). The results reveal the effectiveness of
applying the linear force-free models to the simulated cases. The fitted profiles for the synthetic
measurements at 15, 40, 80, 120, 160, and 260 R⊙ at ∆θ = 0◦ are shown in Figure A1, and the
fitted profiles at ∆θ = 4◦ are shown in Figure A2. The fitted profiles are found to generally match
the synthetic profiles. The model of Yu et al. (2022) fits well all three components, while the model
of Wang et al. (2015) fits well Bθ and Bϕ but leads to slight inconsistencies of Br.

3.2. Comparison between Simulations and Fits

We first investigate the fitting of the model of Wang et al. (2015). Figure 4 shows the comparisons
between the simulation and fitted parameters of the MFR, including θ0, ϕ0, R0, B0, Φz, and Φp.
Subscripts “f” and “s” refer to the fitted and simulated parameters, respectively. Note that the
simulated cases with the spacecraft trajectories at ∆θ = 4◦ and 9◦ are equivalent to the CME
deflection by 4◦ and 9◦ relative to the equator, and thus θ0 under such conditions is 86◦ and 81◦,
respectively. We find that all the normalized χ are below 0.2, indicating that the fitted profiles
are close to the synthetic in-situ profiles. There are four points to understand in the figure. First,
except for the results at 15 R⊙ and 40 R⊙, θf is consistent with θs (differences within ±10◦).
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Figure 3. Synthetic in-situ temporal profiles. From top to bottom, the figure shows the magnetic field strength,
three magnetic field components, radial proton velocity, proton density, and proton temperature. The vertical
dashed lines mark the MFR boundaries. The red and blue dashed curves represent the fitted profiles based on the
models of Wang et al. (2015) and Yu et al. (2022), respectively. The blue dashed line in the velocity panel indicates
the fit to the velocity-time data points using Equation 17.

Second, the fitted ϕ is also consistent with that from the simulations, except for the two fits

at ∆θ = 0◦ and three at ∆θ = 4◦ (but they are within ±20◦). Third, the fitted R0 is roughly

consistent with that in simulations with the differences being within ± ∼ 10%. At ∆θ = 4◦, the

fitting overestimates R0. At ∆θ = 0◦, the relative difference varies monotonically from negative

to positive, whereas the trend is reversed at ∆θ = 9◦. Fourth, the fitting underestimates the

magnetic field strength (B0) at the MFR axis by around 10–20% at ∆θ = 0◦ and 4◦, respectively.

The underestimation becomes more significant at ∆θ = 9◦ and shows a clear trend with distance.

We next turn our focus on Φz and Φp, the axial and poloidal magnetic fluxes. Based on the

bottom two panels, the fitting model underestimates both Φz and Φp for almost all crossings. First,

we find that the underestimation of Φz becomes more significant when the angular separation from
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Figure 4. Comparisons between the simulation and fitted parameters using the model of Wang et al. (2015). The
parameters include θ0, ϕ0, R0, B0, Φz , and Φp, and the subscripts “f” and “s” refer to the fitted and simulated
parameters, respectively. The gray solid curve in the bottom left panel shows the relative difference between the
axial magnetic flux in the central circular region and the total axial flux of the entire MFR. The gray dashed curve
indicates a greater 20% systematic underestimation compared to the solid curve.

the Sun-MFR axis line (or impact parameter) is larger. This also applies to Φp. We do not consider
the results at ∆θ = 9◦ in the following part but discuss its implication in Section 4.2. We emphasize
that a) the underestimation of Φz is distance-dependent, i.e., being greater at larger distances,
and b) the underestimation of Φp is independent of distance. Using the results at ∆θ = 0◦, the
underestimation of Φz ranges from 12% to 52% when the MFR propagates from 15 R⊙ to 215 R⊙
and beyond. The results at ∆θ = 4◦ show a very similar trend but the fit at 15 R⊙ is consistent with
the simulated Φz. For both of these ∆θ, the underestimation does not change significantly beyond
the MFR distance of 160 R⊙. This is related to the fact that the MFR aspect ratio also remains
almost constant beyond that distance (see the bottom right panel of Figure 2). As for Φp, the
underestimation is weaker compared to that of Φz (relative differences are within around −20%),
indicating that the fitted Φp is approximately consistent with the simulations. Furthermore, the
fitted Φp is distance-independent (i.e., independent of the aspect ratio).

When the MFR is close to the Sun with its aspect ratio being close to 1, there exists an
underestimation of Φz of ∼12% at ∆θ = 0◦, and the underestimation of Φp is also around ∼10–20%
at different distances. We illustrate here that such underestimations of Φz and Φp are systematic.

SOLA: main.tex; 4 March 2025; 1:08; p. 11



Based on Equations 12 and 13, Φz and Φp in the Lundquist solution are determined by the fitted

B0 and R0 (∝ B0R
2
0 for Φz, and ∝ B0R0 for Φp). Therefore, the underestimation of the fitted

B0 and the slight difference of R0 as shown in the two middle panels of Figure 4 can explain the

systematic underestimations of Φz and Φp. However, the underestimations of the fitted B0 and

R0 are distance-independent (at ∆θ = 0◦ and 4◦), and thus the distance-dependent additional

underestimation of Φz requires further elucidation, which is attributed to the model’s circular

cross-section assumption and is discussed in Section 4.

Figure 5. Similar to Figure 4 but using the model of Yu et al. (2022).

We now turn our attention to the fitted results of the model of Yu et al. (2022). Figure 5 shows

the comparisons of the parameters obtained from simulations and fittings. Due to the incorporation

of the MVA method, it is found that this model can lead to consistent ϕ0 at ∆θ = 0◦ (at ∆θ = 4◦,

the difference is still small). In general, the comparisons as shown in Figure 5 are similar to

those for the model of Wang et al. (2015) in Figure 4. First, most of the fitted R0 and B0 are

slightly smaller. Second, the fitted Φz at ∆θ = 0◦ and 4◦ are underestimated compared to Φz

in simulations, and this underestimation is found to be distance-dependent. Third, the fitted Φp

at ∆θ = 0◦ and 4◦ are slightly smaller (distance-independent) than the simulated Φp. Last, the

fitted R0, B0, Φz, and Φp at ∆θ = 9◦ are significantly inconsistent with the MFR parameters in

simulations.
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4. Discussion

In this section, we focus on the reason for the underestimation of the axial magnetic flux using a
circular cross-section model to fit an elliptical MFR and discuss the uncertainties and implications
related to the model’s cross-section and the spacecraft’s impact parameter.

4.1. Numerical Explanation

We use Figure 6 to illustrate the underestimation of Φz as a function of distance. In this figure,
the MFR is obtained from our simulations when the MFR front reaches about 215 R⊙ (1 au).
The aspect ratio of the MFR at that distance is around two. The color map indicates the ratio
of the axial magnetic field strength to the maximum axial field strength. It is found that the
majority of the axial magnetic field is located in the region near the MFR center (axis), which is
also supported by the synthetic in-situ profiles in the radial direction. The black arrow and the
vertical dashed line indicate the MFR propagation direction, and the three synthetic spacecraft
trajectories at ∆θ = 0◦, 4◦, and 9◦ are shown by the black dashed lines. If we use a model with
a circular cross-section to fit the in-situ data, then the model only covers the central region of
the MFR and misses the outer part, indicated by the white circle in the figure (note that the
trajectory at ∆θ = 9◦ is outside the central circular region). Therefore, even though the axial
magnetic field can be well-fitted, the total axial magnetic flux is still underestimated because the
axial field (flux) outside the central circle is not considered. The more flattened the MFR is, the
larger the underestimation may be. This is further confirmed in simulations.

Δ𝜃 = 9° Δ𝜃 = 4° Δ𝜃 = 0°

Figure 6. Schematic of using a circular cross-section model to fit an elliptical MFR. The MFR is obtained from
the simulations when the MFR front propagates to around 215 R⊙. The color map indicates the ratio of the axial
magnetic field (Bϕ) strength to the maximum axial field strength. The black arrow indicates the MFR propagation
direction, and the three synthetic spacecraft trajectories at ∆θ = 0◦, 4◦, and 9◦ are shown by the black dashed
lines. The two white arrows indicate the poloidal magnetic flux integrated along the horizontal and vertical dashed
lines. This MFR is taken at the same time as that in the bottom panel of Figure 1.

We calculate the axial magnetic flux just within a central circular region of the MFR (i.e., the
white circle), with a diameter spanning from the front to the rear (i.e., the vertical dashed line),
at the six selected different distances. The fraction is calculated by (Φzc − Φz)/Φz, where Φzc is
the axial flux within the circular region and Φz is the total flux. The solid curve in the bottom left
panel of Figures 4 and 5 displays the variation of the fraction, showing that the fraction decreases
with distance and becomes approximately constant of around 20% after around 150 R⊙. Note
that since most of the strong Bz is distributed in the region near the axis, the underestimation
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at a larger aspect ratio is not very significant. If we add an upper systematic underestimation of
around 20%, based on the underestimations of B0 and R0, while noting that Φz is proportional to
B0R

2
0 (see Section 3.2), to the solid curve to derive the dashed curve in Figures 4 and 5, we find

that the dashed curve is consistent with the estimates at ∆θ = 0◦ and 4◦ as shown in the figures.
Therefore, it further supports the conclusion that the additional underestimation of Φz is caused
by the deformation of the MFR.

We also discuss the estimation of the poloidal magnetic flux Φp. In numerical simulations, Φp of
the MFR is calculated using the difference between the magnetic flux function values obtained at
the MFR axis (where it has the maximum value) and at the MFR boundary. Such a difference is
independent of the deformation of the MFR. Moreover, in the fitting models, Φp can be estimated
by integrating the poloidal magnetic field across half of the vertical (at ∆θ = 0◦) or horizontal
dashed line (also indicated by the white arrows in Figure 6) inside the MFR. Integral along either
the vertical or horizontal line is conserved and independent of the shape of the MFR. Therefore,
the estimation of Φp is independent of the distance (or aspect ratio).

4.2. Uncertainties and Implications

In our simulations, the mass and magnetic fluxes are conserved during the MFR propagation.
However, in reality, CMEs may experience internal magnetic reconnection (Myers et al. 2015)
or magnetic erosion (e.g., Dasso et al. 2006; Ruffenach et al. 2012; Lavraud et al. 2014; Wang
et al. 2018; Farrugia et al. 2023) during their eruption and propagation. Internal reconnection can
convert axial magnetic flux to poloidal magnetic flux but the MFR helicity remains conserved if
considering the MFR as a closed system. Magnetic erosion can peel off the outer shells of the MFR
and thus cause decreases in the magnetic fluxes and mass of the MFR. These two aspects are out
of the scope of this study.

We discuss the influence of the asymmetry of the in-situ magnetic field profiles on the fitted
parameters. As shown in Figures A1 and A2, the MFR magnetic profiles are more asymmetric
(stronger at the front) close to the Sun, while, with increasing solar distances, these profiles become
more symmetric. It is well known that the aging effect (Osherovich, Farrugia, and Burlaga 1993;
Démoulin et al. 2020; Regnault et al. 2024b) in association with the CME expansion can result in
such asymmetric magnetic profiles. However, Figures A1 and A2 with well fitted expansion speeds
indicate that the incorporation of the MFR expansion is not sufficient to explain the asymmetric
magnetic profiles when the MFR is close to the Sun (similar to the results as shown in Yu et al.
2022). The compression from the stretched overlying coronal magnetic field ahead of the MFR may
provide additional contributions to the stronger field magnitude at the front. Such an asymmetry
leads to uncertainties in the fitted MFR axis orientation, especially the elevation angle θf , which
may further affect other fitted parameters. Based on Equations 12 and 13, conservation of the
magnetic fluxes depends on the fitted B0 and R0. Within the limitation of the two circular cross-
section models, we test the fitted B0 and R0 for the case at 15 R⊙ and ∆θ = 0◦ by fixing θf = 90◦

in the models. We find that, in the model of Wang et al. (2015), B0 and R0 are not significantly
affected but the fitted magnetic field profiles become more inconsistent with the simulations; in
the model of Yu et al. (2022), B0 is underestimated while R0 remains approximately the same
(indicating that the impact parameter is not affected). We note that those results are obtained
based on a fitting to minimize χ; however, the minimization fitting technique may result in the
MFR parameters that are inconsistent with the true parameters observed in simulations, which
need further investigation in the future. In addition, the aging effect associated with the MFR
acceleration during its propagation can also influence the asymmetry of the in-situ magnetic field
profiles.

We then discuss the conservation of the MFR magnetic helicity here, as helicity is one of the
fundamental parameters of MFRs. In our numerical method, even though it solves 2.5-D problems,
we can also calculate the magnetic helicity per unit length, which depends on the axial magnetic
field and magnetic flux function (Hu et al. 1997, and see their Equation 33). Such expression is
theoretically conserved and has been numerically confirmed to be conserved in the presence of
reconnection (Hu et al. 1997). In our simulations, the total magnetic helicity of the MFR is also
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conserved. In the Lundquist solution model, magnetic helicity is expressed as follows:

Hm =

∫ l

0

∫ 2π

0

∫ R0

0

A ·Brdrdφdz = 0.701B2
0R

3
0l, (18)

in which A is a vector potential of B. Equation 18 reveals that Hm is proportional to Φz × Φp.
Thus, the MFR helicity will also be underestimated, and such underestimation depends on the
MFR aspect ratio.

Overall, we have shown that, although the linear force-free circular cross-section model can fit
the synthetic in-situ profiles well, it can lead to an underestimation of the axial magnetic flux of the
flattened MFR but obtain relatively consistent poloidal flux. The cases with nonlinear force-free
or even non-force-free magnetic field configurations need to be further investigated. In addition, in
Figures 4 and 5, the more significant underestimations of Φz and Φp at larger ∆θ are due to the
underestimation of B0. Combining Figure 6, we deduce that the detection of the MFR structure is
still available for a flattened MFR even though the spacecraft trajectory is distant from the MFR
axis (with larger impact parameters); however, since the majority of the strong axial magnetic
field is distributed in the inner circular region of the MFR for a deformed MFR, the fitting using
a circular cross-section model may not well obtain the true B0. The incorporation of the models
with non-circular (elliptical) cross-sections may be helpful to resolve this problem. Since there are
varieties of non-circular cross-section models with different axis symmetry assumptions, we plan
to conduct these studies with different models in the future.

5. Conclusion

Magnetic fluxes (poloidal and axial) of MFR can be used as good indicators to connect the
properties of CMEs estimated in the corona and in-situ in interplanetary space, as has been
done in past work (e.g., Qiu et al. 2007; Möstl et al. 2009; Hu et al. 2014). In the ideal MHD
frame, magnetic fluxes are conserved. We use 2.5-D MHD numerical simulations to study the
influence of the MFR deformation on the magnetic fluxes of MFR estimated in-situ using a circular
cross-section MFR model. In simulations, the poloidal and axial magnetic fluxes of the MFR are
conserved during its propagation. The cross-section of the MFR becomes flattened, and its aspect
ratio (lateral size to radial size) increases to around two when the MFR propagates beyond the
distance of around 150 R⊙. Analyses of in-situ measurements have revealed that the MFR aspect
ratio may be of the order of two to three near one au, consistent with the simulation used here
(Démoulin, Dasso, and Janvier 2013; Lugaz et al. 2024).

We create synthetic spacecraft measurements at different distances, i.e., at 15, 40, 80, 120, 160,
215, and 260 R⊙, which cover simulated MFR conditions with different aspect ratios. We use two
cylindrical linear force-free MFR models with a circular cross-section (Wang et al. 2015; Yu et al.
2022) to fit the synthetic in-situ data. We find that the fitting underestimates the axial magnetic
flux, and such underestimation depends on the distance (or aspect ratio); the more flattened the
MFR becomes, the more significant the underestimation is. This is because a circular cross-section
only considers the axial magnetic field in the central circular region and thus neglects the axial
field outside the central region. In our simulations, the central circular region is found to contain
∼80% of the total axial magnetic flux when the aspect ratio of the MFR cross-section is around
two. In fittings with circular cross-section models, an elliptical cross-section with an aspect ratio
of two leads to a 50% underestimation in the axial flux (a systematic underestimation in the fitted
axis magnetic field strength is incorporated). Based on the events measured near 1 au, Démoulin,
Dasso, and Janvier (2013) found that the aspect ratio of the MFR is elliptical with an aspect
ratio of two or three. However, the fitting of the poloidal flux is found to be independent of the
deformation of the MFR when the synthetic spacecraft impact parameter is small or moderate.
The poloidal flux is related to the integral of the poloidal magnetic field in the plane of the MFR
cross-section along a line from the axis to the boundary of the MFR. Such integral is conserved
regardless of how the MFR cross-section changes. These results further indicate that we need
to take care of the uncertainties when using circular cross-section MFR models to get the MFR
properties in heliophysics and space weather studies. Furthermore, for the next step, we aim to
conduct studies using elliptical cross-section models.
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Appendix

A. Appendix

Figures A1 and A2 show the simulated magnetic field vectors and radial velocity at different
distances and at ∆θ = 0◦ and 4◦, overlaid by the fitted results of the models of Wang et al.
(2015) and Yu et al. (2022), respectively. The blue dashed lines in the velocity panels indicate the
linear fit to the velocity-time measurements. It is found that the fitted profiles are consistent with
the simulation profiles except for the minor inconsistencies of Br using the model of Wang et al.
(2015).
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Figure A1. Simulated magnetic field vectors and radial velocity (gray solid curve) at different distances and at
∆θ = 0◦, overlaid by the fitted results (dashed curves).

Figure A2. Simulated magnetic field vectors and radial velocity (gray solid curve) at different distances and at
∆θ = 4◦, overlaid by the fitted results (dashed curves).
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